Halogen-Free Solvent for Oxidative Carbonylation of Bisphenol A to Polycarbonate

Masaya Okamoto, ${ }^{1}$ Jun-Ichi Sugiyama, ${ }^{2}$ Kazuhiko Takeuchi ${ }^{2}$
${ }^{1}$ Polymer Research Laboratory, Idemitsu Kosan Co., Ltd., Ichihara, Chiba 299-0193, Japan
${ }^{2}$ National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

Received 6 August 2006; accepted 6 May 2007
DOI 10.1002/app. 26935
Published online 25 July 2007 in Wiley InterScience (www.interscience.wiley.com).

Abstract

Halogen-free solvents for oxidative carbonylation of bisphenol A to polycarbonate using carbon monoxide were investigated. Tetrahydorofuran, γ-butyrolacton, and acetophenone, which dissolve both bisphenol A and polycarbonate, gave a polycarbonate yield that was lower than using a halogenated solvent of dichloromethane. On the other hand,

propylene carbonate that has a carbonate bond gave a polycarbonate yield the same as using dichloromethane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 106: 2840-2842, 2007

Key words: polycarbonate; oxidative carbonylation; propylene carbonate; halogen-free solvent

INTRODUCTION

Polycarbonates (PCs) are excellent engineering thermoplastics because of their good impact strength, thermal resistance, and transparency. ${ }^{1}$ They can be prepared mainly in two ways by the solution method of bisphenol A (BPA) with phosgene and the melt method of BPA with diphenyl carbonate (DPC). ${ }^{2}$ However, there is a problem with the solution method that uses halogenated solvents, which negatively affect the environment. The melt method includes a melt process that can be an environmentally favorable technology from the point of not using a solvent, but a large amount of heat is needed. Moreover, it includes additional phenol recycling process and DPC reproducing process. Therefore, more environmentally favorable technology for PC synthesis must be developed other than the melt method. Recently, a new PC producing technology, a modified solution method, has been attracting interest to prepare PC directly from carbon monoxide and BPA using Pd complex/redox cocatalyst/onium halide systems. ${ }^{3,4}$ A study reported that, via oxidative carbonylation, the molecular weight of PC obtained with these catalyst systems was high, and the highest numberaverage molecular weight $\left(M_{n}\right)$ of PC was $M_{n}=9400$. However, dichloromethane (MC), a halogenated solvent that negatively affects the environment, was used in it.

Correspondence to: M. Okamoto (masaya.okamoto@si.idemitsu.co.jp).

Contract grant sponsor: New Energy and Industrial Technology Development Organization (NEDO).

Journal of Applied Polymer Science, Vol. 106, 2840-2842 (2007) © 2007 Wiley Periodicals, Inc.

(3)WILEY

InterScience

This article describes halogen-free solvents for oxidative carbonylation of BPA to PC catalyzed by conventional Pd complexes.

1

2

Figure 1 Structures of Pd complexes.

Scheme 1 Oxidative carbonylation of BPA.

Scheme 2 Formation of carbonate bond by Pd catalyst.

TABLE I
Effect of Solvent for Oxidative Carbonylation of BPA ${ }^{\text {a }}$

Run	Pd catalyst	Onium halide	Redox catalyst ${ }^{\text {b }}$		Solvent ${ }^{\text {c }}$	PC yield (\%)			
					GPC ${ }^{\text {d }}$				
					M_{n}	M_{w}	M_{w} / M_{n}		
1-1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	MC		43	2220	3210	1.45
1-2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	THF		20	1010	2720	2.69
1-3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	BL	12	2020	2780	1.38	
1-4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	AP	1	-	-	-	
1-5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ph}_{4} \mathrm{NBr}$	BQ	MC	63	2990	4440	1.48	
1-6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ph}_{4} \mathrm{NBr}$	BQ	THF	6	1610	2010	1.25	
1-7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ph}_{4} \mathrm{NBr}$	BQ	BL	18	1970	2670	1.36	
1-8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ph}_{4} \mathrm{NBr}$	BQ	AP	1	-	-	-	
1-9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{PBr}$	BQ	MC	40	2190	3030	1.38	
1-10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{PBr}$	BQ	THF	0	-	-	-	
1-11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{PBr}$	BQ	BL	23	2080	2680	1.29	
1-12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu}){ }_{4} \mathrm{PBr}$	BQ	AP	2	-	-	-	
1-13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	HQ	MC	56	2750	4050	1.47	
1-14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	HQ	THF	1	-	-	-	
1-15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	HQ	BL	15	1950	2430	1.25	
1-16	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	HQ	AP	2	-	-	-	
1-17	1	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	MC	53	3170	4590	1.45	
1-18	1	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	THF	0	-	-	-	
1-19	1	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	BL	8	1580	2020	1.28	
1-20	1	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	AP	3	-	-	-	
1-21	2	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	MC	54	2600	3870	1.49	
1-22	2	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	THF	0	-	-	-	
1-23	2	$(n-\mathrm{Bu}){ }_{4} \mathrm{NBr}$	BQ	BL	4	970	1650	1.70	
1-24	2	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	BQ	AP	2	-	-	-	

[^0]
EXPERIMENTS

Materials

Pd complexes 1 and 2 (Fig. 1) were prepared according to previous report. ${ }^{5}$ Molecular sieve $3 \AA$ was dried in vacuo at $160^{\circ} \mathrm{C}$ for 12 h . Carbon monoxide and oxygen gases (99.99%) were used without further purification. All other reagents were used as received.

Polymerization

A typical run was as follows (Run 3-5 in Table III): $\mathbf{1}$ (9.0 $\mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{Co}(\mathrm{AcO})_{2} 4 \mathrm{H}_{2} \mathrm{O}(31.1 \mathrm{mg}, 0.125 \mathrm{mmol})$, benzoquinone ($67.6 \mathrm{mg}, 0.625 \mathrm{mmol}$), ($n-\mathrm{Bu})_{4} \mathrm{NBr}(201.5 \mathrm{mg}$, 0.625 mmol), molecular sieve $3 \AA(1 \mathrm{~g})$, bisphenol A (BPA) ($950 \mathrm{mg}, 4.16 \mathrm{mmol}$), and propylene carbonate (10 mL) were charged to a 30 mL SUS-316 autoclave followed by charging with $\mathrm{CO}(6.0 \mathrm{MPa})$ and $\mathrm{O}_{2}(0.3 \mathrm{MPa})$. The auto-

TABLE II
Effect of Solvent for Oxidative Carbonylation of BPA ${ }^{\text {a }}$

			$\mathrm{GPC}^{\mathrm{b}}$		
Run	Solvent	PC yield $(\%)$	M_{n}	M_{w}	M_{w} / M_{n}
$2-1$	Dimethyl carbonate	0	-	-	-
$2-2$	Diethyl carbonate	0	-	-	-
$2-3$	Diphenyl carbonate	0	-	-	-
$2-4$	Ethylene carbonate	3	-	-	-
$2-5$	Propylene carbonate	44	2630	3590	1.37
$2-6$	Dichloromethane	43	2220	3210	1.45

[^1]TABLE III
Comparison Between ProC and MC for Oxidative Carbonylation of BPA ${ }^{\text {a }}$

					$\mathrm{GPC}^{\mathrm{C}}$		
Run	Pd catalyst	Onium halide	Solvent $^{\text {b }}$	PC yield (\%)	M_{n}	M_{w}	M_{w} / M_{n}
$3-1$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	ProC	44	2630	3590	1.37
$3-2$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	MC	43	2220	3210	1.45
$3-3$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{PBr}$	ProC	42	2590	3600	1.39
$3-4$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$(n-\mathrm{Bu})_{4} \mathrm{PBr}$	MC	40	2190	3030	1.38
$3-5$	1	$\left(n-\mathrm{Bu}{ }_{4} \mathrm{NBr}\right.$	ProC	55	2760	4040	1.46
$3-6$	1	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	MC	53	3170	4590	1.45
$3-7$	2	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	ProC	55	2530	4230	1.67
$3-8$	2	$(n-\mathrm{Bu})_{4} \mathrm{NBr}$	MC	54	2600	3870	1.49

[^2]clave was placed in an oil bath and kept at $100^{\circ} \mathrm{C}$. After 24 h , the reaction was quenched by cooling the autoclave in a water bath and by gas purging. After filtering the reaction mixture, the product was isolated by reprecipitation from the reaction mixture by adding excess methanol $(200 \mathrm{~mL})$ to give a polycarbonate yield of $55 \%(581 \mathrm{mg})$.

Measurement

The molecular weight and molecular weight distribution of polycarbonate (PCs) were determined using a JASCO Gulliver GPC system equipped with a SHODEX K-804L column, using polystyrene as standard and chloroform as an eluent.

RESULTS AND DISCUSSION

The catalyst system consists of a Pd catalyst, inorganic and organic redox cocatalysts, onium salts, and a dehydrating agent (Scheme 1). The formation of a carbonate bond by the Pd catalyst is shown in Scheme 2. The redox cocatalysts are necessary in the reduction of $\mathrm{Pd}^{\mathrm{II}}$ to Pd^{0} when the carbonate bond is formed. It is considered that the working of onium salt is by activation of phenols.

Tetrahydorofuran (THF), γ-butyrolacton (BL), or acetophenone (AP) were used as solvents that dissolved both BPA and polycarbonate. The results are summarized in Table I. Several types of Pd complexes, onium salts, and organo-redox catalysts were examined. However, a reaction condition that gave a polycarbonate yield and molecular weight same as using dichloromethane (MC) could not be found. These solvents have the oxygen that has unshared electron pairs, so there is a possibility that the oxygen forms a coordination bond with Pd. Consequently, it is considered that the approach of BPA
to Pd is obstructed, thus the reaction does not progress easily.

Because of using MC as the solvent, a reaction to form the carbonate bond progresses, and the oxidative carbonylation reaction is not obstructed by the carbonate compound although the carbonate bond has unshared electron pairs. Solvents that have a carbonate bond were examined. The results are summarized in Table II. When dimethyl carbonate, diethyl carbonate, or diphenyl carbonate was used, PCs were not obtained at all. However, when using propylene carbonate (ProC), PC was obtained with a yield same as using MC. ProC is a peculiar solvent for the oxidative carbonylation reaction. When several different catalyst systems were used with ProC, each of them gave a PC yield the same as using MC (Table III).

CONCLUSIONS

With propylene carbonate as a halogen-free solvent, oxidative carbonylation of BPA to polycarbonate using carbon monoxide was advanced. More detailed optimization studies are in progress to improve the activity of the oxidative carbonylation catalysts using propylene carbonate.

References

1. Freitag, D.; Fengler, G.; Morbitzer, L. Angew Chem Int Ed Engl 1991, 30, 1598.
2. Schnell, H. Chemistry and Physics of Polycarbonate; Interscience: New York, 1964.
3. Okuyama, K.; Sugiyama, J.; Nagahata, R.; Asai, M.; Ueda, M.; Takeuchi, K. Macromolecules 2003, 36, 6953.
4. Ishii, H.; Goyal, M.; Asai, M.; Takeuchi, K.; Ueda, M. Macromol Rapid Commun 2001, 22, 376.
5. Ishii, H.; Goyal, M.; Ueda, M.; Takeuchi, K.; Asai, M. Appl Catal A 2000, 201, 101.

[^0]: ${ }^{\text {a }}$ Reaction conditions: BPA (4.16 mmol), Pd catalyst (0.025 mmol), $\mathrm{Ce}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol})$, redox catalyst (0.625 mmol), onium halide (0.625 mmol), molecular sieves $3 \AA(1 \mathrm{~g})$, solvent $(10 \mathrm{~mL}), \mathrm{CO}(6.0 \mathrm{MPa}), \mathrm{O}_{2}(0.3 \mathrm{MPa}), 100^{\circ} \mathrm{C}, 24 \mathrm{~h}$. The PC produced was isolated by reprecipitation from the each solution by adding excess methanol.
 ${ }^{\mathrm{b}}$ BQ, 1,4-benzoquinone; HQ , hydroquinone.
 ${ }^{\text {c MC, dichloromethane; THF, tetrahydrofuran; BL, } \gamma \text {-butyrolactone; AP, acetophenone. }}$
 ${ }^{\mathrm{d}}$ Calculated by using calibration curve for polystyrene.

[^1]: ${ }^{\text {a }}$ Reaction conditions: BPA (4.16 mmol$), \mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}), \mathrm{Ce}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol}), 1,4$-benzoquinone (0.625 mmol), $(n-\mathrm{Bu})_{4} \mathrm{NBr}(0.625 \mathrm{mmol})$, molecular sieves $3 \mathrm{~A}(1 \mathrm{~g})$, solvent $(10 \mathrm{~mL}), \mathrm{CO}(6.0 \mathrm{MPa}), \mathrm{O}_{2}(0.3 \mathrm{MPa}), 100^{\circ} \mathrm{C}, 24 \mathrm{~h}$. The PC produced was isolated by reprecipitation from the propylene carbonate solution by adding excess methanol.
 ${ }^{\mathrm{b}}$ Calculated by using calibration curve for polystyrene.

[^2]: ${ }^{\text {a }}$ Reaction conditions: BPA (4.16 mmol$)$, Pd catalyst $(0.025 \mathrm{mmol}), \mathrm{Ce}(\mathrm{OAc})_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol}), 1,4$-benzoquinone (0.625 mmol). The PC produced was isolated by reprecipitation from the each solution by adding excess methanol.
 ${ }^{\mathrm{b}}$ ProC, propylene carbonate; MC, dichloromethane.
 ${ }^{\text {c }}$ Calculated by using calibration curve for polystyrene.

